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Abstract

We provide, calibrate and test a realistic model of the spread of SARS-Cov-2 in an
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quantitatively, rather than qualitatively, approximately correct.
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1 Introduction

The main question all countries are facing throughout the world is how to restart the econ-

omy while saving lives in the middle of the Covid-19 pandemic. We present a model and

simulations answering this question, and apply them to data from two emblematic Italian

regions: Lombardia and Veneto. These contiguous areas in the north of the country were the

first in Italy to be hit by the Covid-19 outbreak (at about the same time) but experienced

very different evolutions of the infection. While in Lombardia, with a population of about

10 ml, people, 17159 persons died because of Covid-19 between February 24 and October

23, 2020, in Veneto, with a population of 4.9 ml, the same happened to only 2308 persons.1

We show that these differences are due to factors likely to operate in every country, and are

in fact instances of worst and best case scenarios: thus the model is of general interest.

A simulation of the effects of different strategies in these two regions is instructive for a

wider audience because Lombardia and Veneto capture well the dichotomy of Covid-19 expe-

riences that is emerging throughout the world, between areas hit very severely and areas hit

more mildly by the pandemic. The main factors determining this dichotomy are differences

in population density, delays in reacting correctly during the early phase of the infection,

and constraints in the number of intensive care places in hospitals (which is shortened to

HC in what follows). The simulations we present are based on a reformulation of the SEIR

model (Allen, 2017) specifically designed to capture these factors.

A second substantial innovation is motivated by the observation that the lethality of

Covid-19 increases with age presenting a clear discontinuity at age fifty. As of October 23,

2020, out of more than 36000 fatalities in Italy, only 409 were of subjects younger than 50

and less than 25 of subjects younger than 30. Moreover, the degree of proximity between

workers operating in different sectors has been shown to affect the risk of contagion for

this virus.2 Therefore, our model allows for a differentiation of the population by sectors

(SEC) and ages (AGE), and thus generalizes the concept of basic reproduction number

(R0) to a matrix. Specifically, our SEIR-HC-SEC-AGE model has two sectors characterized

respectively by a low and a high risk of infection, which are calibrated on the basis of the

information on workers’ proximity contained in Barbieri et al. (2020). As for age, we consider

9 brackets, which are calibrated to match the initial distribution of age in the population

of the two regions, and that are characterized by age specific labor force participation rates

(taken from national statistics) and by age specific lethality, hospitalization and intensive

care (IC) rates due to Covid-19 (taken from Ferguson et al., 2020).3

1Official data from the Italian “Protezione Civile”.
2See, for example, Boeri et al. (2020) and Barbieri et al. (2020).
3In the Online Appendix we present qualitatively similar results based on the analogous parameters
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The conclusion that differentiation by age can help in choosing good policies is obvious.

If the aim is to reduce the loss of GDP with a minimum loss of lives, then at any given state

of the economy allowing a younger person (for whom the virus is less lethal) to return to

work is better than allowing an older one. A glance at the lethality table by age will offer

all that is needed to support this conclusion. The benefit of differentiation by risk sector is

just as obvious. However, a flight engineer trying to fly a plane will not find the qualitative

statement that weight makes the plane fall and lift makes the plan go up very useful: he

will need to know the precise quantitative tradeoff. Similarly, the qualitative statement that

allowing younger people to return to work is less costly, or its reformulation in an as if model

capturing the tradeoff, will leave the policy maker equally clueless on what to do.

Instead, our goal is to contrast the economic and public health effects (GDP loss vs. saved

lives over a full year) of possible policies to restart the economy that take into account the

differences in age specific and sector specific contagion risks. Starting from one extreme with

a policy that sends back to work the entire workforce (which we label as policy ALL), the

other policies that we study progressively inactivate (i.e. allow only a minimum of the labor

force to be active) workers in the high-risk sector, beginning with those belonging to a higher

age bracket, until all age brackets and sectors are inactivated (which is the opposite extreme

policy, and is labelled as LOCK).

The GDP loss induced by the interaction between the pandemic and the different policies

is assumed to be proportional to the number of days in which the policies are in place and to

the corresponding fraction of the workforce that is unproductive. In future research we plan

to improve on this measure in various ways, particularly with the goal of capturing more

long term economic effects of the pandemic. It is likely, however, that the measure of GDP

loss we currently use is a lower bound to the total economic cost of the different policies.

The number of Covid-19 fatalities associated to the different strategies is predicted by the

SEIR-HC-SEC-AGE model.4

The trade-off between saved lives and GDP losses that characterizes “age based” and

“sector based” strategies is not immediately obvious, and its description is our main contri-

bution. The two extreme policies LOCK and ALL provide useful benchmark against which

to evaluate the intermediate ones. We now describe our main results.

Taking the policy LOCK as reference, we see that a sequence of policies of return to

work for a large fraction of the labor force are feasible, that have a moderate cost in terms

of fatalities, as long as they limit the activity of subjects that face a high risk because of

their age or because of the sector in which they operate. While we are well aware that each

estimated by the US Center for Disease Control (CDC). See Garg (2020).
4The code to replicate our simulations and estimates is available from the authors.

2

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3580626



single death due to the current epidemic is a tragedy, we are also keenly aware that the

social, mental, and even health implications of a prolonged inactivity are also tragic. Thus,

we consider the exploration of these combinations an intellectual duty.

Our results indicate that the efficient frontier is markedly convex. In one of the most

plausible scenarios that we consider for Lombardia, a 1 percentage point reduction of the

GDP loss (about 4 billion Euro) obtained sending back to work only young and low-risk

sector workers starting from a complete lockdown (LOCK), generates about 615 additional

fatalities on a yearly basis. At the opposite extreme of the frontier, the same reduction of

GDP loss obtained with the activation of the oldest workers in risky sectors, i.e. approaching

the case of the ALL policy, the number of additional fatalities is more than 8 times higher

(5,860). The correspondent numbers for Veneto (where one percentage point of GDP is

worth about 1.6 billion Euro) are 60 and 1597, i.e. the second number is about 26 times

higher than the first one. Qualitatively similar results emerge from other scenarios.

A different pattern emerges if we allow individuals to take into account the risk of infection

and adjust their behavior to reduce this risk, independently of the administrative measures.

We frame this hypothesis in a precise model, assuming that the news on the number of

fatalities, which are widely available and frequently communicated in the media, offer reliable

information on the number of infected. In our effort to obtain a quantitative assessment, we

provide a testable model and estimate the size of the effects of these behavioral adjustments

using data on mobility for different types of activities provided by Google.5

The quantitative effect of allowing for individual behavioral adjustments is substantial,

and the consequences for the shape of the trade-off, represented by the Pareto frontier,

dramatic: the curve changes from convex to almost linear and flat. This finding hinges on

the assumption that such response in the future will follow, for at least one year, the same

pattern that we have observed in the past. Whether the assumption of stability in behavioral

response is sound is, in our opinion, far from obvious. Behavioral adjustments occurring at

the outbreak of the news might themselves be prone to reduction when the epidemic becomes

the new normal.

So far we have focused on how the allocation of potential workers between activity and

inactivity affects health consequences in the population. There is an additional channel,

which does not involve the productive sector. Protecting senior citizens (above the age

of 65, in particular) from the spread of infection may not have any effect on the level of

productive activity, but certainly has a strong effect on the number of fatalities, because the

fatality rate is higher for older individuals. This protection may be in part almost zero-cost

5A first evaluation of the effects of such type of adjustments in behavior has been provided by Brotherhood
et al. (2020).
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(for example, devoting a fraction of the business hours of commercial activities exclusively

to seniors); others may instead induce extra-costs (devoting to seniors part of the public

transportation). For others the cost might be substantial (for example, devoting a sector

of health and service workers to the care of senior citizens). We focus here only on the

trade-off between GDP loss and fatalities induced directly by the allocation of individuals to

productive activity, leaving the additional channel to future research.

The policies that make a relatively safer return to work possible are a combination of

one that has been considered by many government (return to work taking into account the

risk specific to each productive sectors) and another one which instead has been totally

(and surprisingly) disregarded by the authorities in all countries (differentiation depending

on the age of the worker). We think the debate should consider carefully both, and the

public should be aware and able to discuss openly both. Since these conclusions are robust

to parameters specification, the relative merits of the policies are the same when they are

extended to other areas in the world and thus are of immediate interest for an international

policy audience.

This paper is obviously related to the large amount of inspiring research that is currently

conducted throughout the world on the Covid-19 pandemic6 and specifically to the literature

that has considered the possibility to differentiate containment policies by age.7 We differ,

however, from this literature because we do not aim at suggesting an optimal policy based on

some welfare function. Our goal is to measure as precisely as possible, in a specific geographic

context, the policy trade off between economic and public health costs of the strategies to

deal with the pandemic, so that politicians and the public opinion can make an informed

choice. In this respect, the analysis in Acemoglu et al. (2020) is close to ours, but we make an

effort to base our analysis on real data for two specific and emblematic geographic contexts.

Even if geographically focused, however, our paper offers a more general message which is

valid also for other areas and our code can be applied to other contexts with the appropriate

corresponding parameterization and data.

The rest of the paper is organized as follows. In Section 2 we outline the basic features

of the SEIR-HC-SEC-AGE model. In Section 3 we model the decision process of agents who

can take actions that may affect their probability of getting infected and thus the spread of

the virus in the population. A detailed description of of the Multi-Risk dimension of the

6Without aiming for an exhaustive review of the literature, some of the most relevant related papers are:
Atkeson (2020), Berger et al. (2020), Durante et al. (2020), Eichenbaum et al. (2020), Fang et al. (2020),
Garibaldi et al. (2020) Glover et al. (2020), Greenstone and Nigam (2020), Hall et al. (2020) and Piguillem
and Shi (2020)

7For example: Acemoglu et al. (2020), Alvarez et al. (2020), Baqaee et al. (2020), Brotherhood et al.
(2020), Farboodi et al. (2020), Garriga et al., Gollier (2020), Jones et al. (2020), Kudlyak et al., and Rampini
(2020).
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model and its construction is provided in Section 4. The epidemiological model dynamics is

presented in Section 5. Section 6 adds macroeconomics to the model. Section 7 brings the

model to the data and estimates the mobility response of subjects to news about infection,

using Google mobility data. Section 8 describes the calibration of the parameters designed

to capture the situation of Lombardia and Veneto and to characterize the different policies.

Section 9 presents the results, which are discussed in Section 10 together with an analysis of

the limits of our simulations.

2 SEIR-HC-SEC-AGE model

Our objective is to provide a realistic empirical model of the effects of Covid-19 with two

main features. First, the capability of replicating the dynamics of the virus. We will take

as test two emblematic benchmark cases (Lombardia and Veneto) from the beginning of the

pandemic until October 23, 2020. Second, the capability of simulating outcomes of different

policies of containment of the epidemic for one year, starting on November 1, 2020, that are

efficient with respect to the number of fatalities and to the GDP loss. To this end, we extend

the basic SEIR model along many dimensions to the SEIR-HC-SEC-AGE specification whose

basic distinctive features are described in this section.

1. Multi-risk and multi-activity. The population is divided into 19 groups with differ-

ent probabilities of infection, hospitalization and fatality that vary with age, sector and

age-specific labor force participation. A detailed description of these groups is given

in Section 4. Denoting these groups with generic terms a, b ∈ {1, . . . , 19}, the model

for the transmission dynamics of the virus classifies individuals as susceptible St(a),

exposed Et(a), infectious It(a), mildly symptomatic MILDt(a), severely symptomatic

SEVt(a), hospitalized with mild symptoms, HOSPMILDt(a), hospitalized with se-

vere symptoms HOSPt(a), hospitalized needing Intensive Care Unit HOSPICU t(a),

fatalities FATt(a) and recovered RECt(a). We will use the letters S, I etc. with no

subscript as short for susceptible, infectious and so on. In single agents standard epi-

demiological model the dynamics of the infection depends on the basic reproduction

number. This number can be thought of as the product between the probability with

which a meeting of an infectious and a susceptible person results in the susceptible

being infected, and the number of meetings that occur between infectious and suscep-

tible in a unit of time. In our multi-agent model the basic reproduction number will

be replaced by a basic reproduction matrix.
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2. Intervention Policies and Behavioural Responses. With the development of

the virus, the basic reproduction matrix will evolve to reflect intervention policies and

behavioural responses of agents. The basic reproduction matrix depends on the level

of activity in each sector as the number of meetings that occur between infectious and

susceptible in a unit of time depends on their level of activity. This is developed in

Section 4. The virus dynamics will be affected not only by the containment policy

adopted by the government and reflected in the choices of Activity Levels but also

by the behavioural response of individuals to the development of the virus. This is

developed in Section 3.

3. Time-Varying death probability. The probability of death is time-varying and it

can become higher than the constant CFR (Case Fatality Rate) of COVID-19. The

probability of death is modelled to increase progressively with the saturation of hos-

pitals and to reach a critical point when the available supply of intensive care beds is

fully saturated.

Figure 1: COVID-19 in Lombardia and Veneto
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4. Management of Hospital Flows. With our specification of the probability of death,

management of the hospital flows becomes an important policy to reduce mortality.

Extensive testing, early detection of the infectious, their placement in domestic quar-

antine paired with administering medicines can prevent them to reach the stage of

symptoms that need hospitalization. Such policy can therefore avoid the creation of

“wartime conditions” in hospitals and the ensuing collapse in the quality of medical

services. The data from the Northern Italy regions of Veneto and Lombardia reported

in Figure 1 hint at the potential importance of this narrative. The pattern of daily

deaths from the end of February 24, 2020, to October 23, 2020 led to a very differ-

ent outcome with a total count of 17159 fatalities in Lombardia and 2308 in Veneto

(population in Lombardia is 10 millions while in Veneto is 4.9 millions). The figures

also illustrate that a difference in the intensity of testing adopted in the two regions

led to a much more intense use of domestic quarantine in Veneto paired with a strong

control on hospitalization at the beginning of the pandemic. The initial intensive use

of domestic quarantine by Veneto has not led to a massive increase in hospitalization.

Over time, Lombardia has converged to the policy adopted by Veneto which proved

more successful in containing the lethality of the disease.

5. Economic Structure. Finally, we complement the epidemiological framework with

a simple economic structure to model production in the two regions. We summarize

the economic effects as a function of the fraction of the labor force that is not allowed

to work under a given policy. We are fully aware that a complete characterization of

the economic costs of the Covid-19 pandemic would require a more sophisticated and

detailed dynamic macroeconomic model, which we leave for future extensions of this

project.

We now examine these different components in detail.

3 Behavioral response

Several activities (shopping, traveling to work, work, time to consume) are possible at each

time unit. We are going to examine a generic activity of this type, without distinguishing it

in the notation.

We choose the time unit, denoted ∆t, to be “short enough” so that a person only meets

another person within that time unit. When we re-scale the process and set the time unit

to one day, then the number of matches in that longer time unit will be:

M =
1

∆t
. (1)
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Each individual’s value of the activity, indicated by V , is distributed according to a contin-

uous cumulative distribution function F , the same for all consumers. We assume that (i)

whether the activity occurs or not does not affect the agent’s utility in the next period; (ii)

the distribution F over the value drawn is independent of the health condition of the agent

(i.e. on whether he is S, E, I or REM). We omit time subscripts in this section because

they are not necessary in this analysis.

People are randomly matched. These are customers who happen to go to the shop at

the same time, friends one meets, co-workers, fellow travelers in the subway and so on. We

are interested in the matches in which one of the two individuals is I and the other is S.

The meeting of an I and an S person result in S-type being infected with probability β(m),

which is influenced by biological factors, seasonal conditions and preventive measures (m)

taken by the agents (m is mnemonic for masks).

We have now to analyze how many individuals an active person meets. This follows from

the maximization of the individual. He may choose to be inactive, and thus get a given

fixed value, which we normalize to zero. Or he may choose to be active (for example, to

go out of the house in pursuit of some activity), and get the value V drawn, minus the

expected cost of the potential infection. The solution of this simple maximization problem is

described by a threshold in value space: those with a draw of V higher than a threshold v∗,

to be determined endogenously, decide to be active. The threshold is endogenous because,

of course, the probability of being infected depends on the choice made by individuals like

him. Obviously, this behavioral response is a response to the behavior of the others as well

as to the policy being implemented at that time. We examine later – see equations (6) and

(7) – how different policies affect the response.

Proposition 1 Let C be the cost of being infected for a subject. The choice of activity

maximizing utility is determined by a threshold v∗ which solves:

v∗ =
I

N
β(m)Pr(V ≥ v∗)C. (2)

A measure of population density acts as a determinant of the number I of infectious,8

but we ignore it in the notation for simplicity although it will be relevant in explaining

the different effects of the pandemic between the regions that we consider in the empirical

analysis (density is almost 60% higher in Lombardia than in Veneto).

To provide a model for empirical analysis we consider the case in which F is the uniform

distribution on [0, V ], so F (x) = x
V

, for x ∈ [0, V ]. If we denote the probability of being

8Garibaldi et al. (2020) note the similarity of this assumption with the one behind the “matching function”
of labor models.
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infected as

p ≡ I

N
β(m) (3)

then

v∗ =
pC

V + pC
V (4)

so that substituting the value of v∗ gives:

Pr(V ≥ v∗) =
V

V + pC
(5)

In the multisector model we consider later (Section 4), the probability in equation (5)

depends on the age and sector group, and we will write Pr(V ≥ v∗|a) to describe the

probability for the group a.

Similar arguments extend to the period after administrative measures (enforced by fines

or other penalties) are taken to limit movements (as in lockdown). In this case individuals

base their decisions on the expected (taking into account the probability of enforcement) cost

of penalties associated for instance with the lockdown, which is independent of the action of

others. This is added to the expected cost from becoming infected and therefore also to the

right hand side of equation (2), thus increasing the value of v∗ which enters into equation

(4). If we call K the expected non-negative cost of administrative measures to control the

spread of the virus, then one can easily find that:

v∗ = V min

{
pC +K

pC + V
, 1

}
(6)

and therefore:

P (V ≥ v∗) = max

{
V −K
pC + V

, 0

}
. (7)

We provide estimates of this probability in Section 7.

4 Multi-Risk model

We now present the detailed description of the groups introduced in Section 2. In our model

the population is divided into 9 age-brackets. Each age bracket between 20 and 69 years

of age is split into three separate groups. The first two groups include individuals who

work respectively in the low-risk or in the high-risk sectors; the third and last group include

individuals in working age that are not part of the labor force. Thus we have: 5 age groups of

active in the low-risk sector, 5 age groups of active in the high-risk sector, and 5 age groups

of inactive. In addition to these 15 groups there are two age groups of inactive under 20 and

9
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2 age groups of inactive over 69. The resulting 19 groups constitute the set {1, 2, . . . , 19},
with generic term a, b, that we have already introduced. Workers correspond to the elements

{3, . . . , 12} with {3, . . . , 7} in the low-risk sector and {8, . . . , 12} in the high-risk sector. The

set {13, . . . , 17} indicates the inactive groups in the five active age brackets. The number

of age groups of workers is L = 5, and so 3L = 15 is the number of classes of workers as

distinct by age, risk sector and activation.

In this framework the basic reproduction number of single-agent standard epidemiological

models will be replaced by a matrix, with entries that differ among the 19 groups. For

workers, this number may depend on the level of activity. For example, a worker in the

high-risk sector does not infect many people if he is not active. To model the effects of

policies that restrict the access to work of particular categories of workers we specify how

each entry in the basic reproduction matrix depends on the level of activity.

We will first focus on the sub-matrix defining the reproduction rates within the workforce,

that is the sub-matrix that describes how many infected workers of class b are induced by

workers of type a; here a and b are generic elements of the set of workers. We denote the level

of activity as α : {3, . . . , 17} → [0, 1] , with α(a) indicating the level of activity of group a:

for example, α(9) = 0.5 indicates that half of the individuals of age 30 to 39 in the high-risk

sector are active. We denote αmin the minimum level of activity of each active class, and

with 1, a vector of 1’s, the vector of activity corresponding to normal conditions. Iso is a

fixed number (independent of the group); intuitively, this describes the number of infected

when a person is isolated. Thus we define the Basic Reproduction Matrix (BRM) at level

α of activity, for every a and b in the set of workers:

R(a, b;α) = R(a, b; 1)α(a)α(b) + Iso(1− α(a)α(b)) (8)

To simplify the description of the BRM , we denote r(a) the (high, low or inactive) risk

sector of class a; for instance r(3) = Low, r(10) = High; and we introduce two numbers,

Risk(r) for r ∈ Low,High to indicate the level of risk (in number of infected). We assume:

1. R(a, b; 1) = Risk(r(a)) if r(a) = r(b);

2. R(a, b; 1) = Tr if r(a) 6= r(b).

The first condition requires that the BRM of a on b when both are active and in the

same sector only depends on the sector (and not on the age of a and b): so Risk(L) for

the low-risk sector and Risk(H) for the high-risk sector. The second condition requires the

value to be the same for any two active workers who are working in different sectors. Tr is

suggestive of the means of transportation that they share when going to work even if the do

not affect each other during work.
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The value of α for the inactive is constrained to reflect the inactivity condition:

for all a ∈ {13, . . . , 17}, α(a) = 0. (9)

In view of the constraint (9), in the description of the calibration of parameters and policies

we focus on the 2L levels of activity of the workforce. The reduction in activation of agents

during lockdown is modeled by choosing an appropriate level of minimum activity, which

reflects institutional constraints.

We then assume that the values of the reproduction matrix for the inactive workers is

equal to a common value:

Risk(In) = Iso (10)

The description of the BRM is completed by considering the four non-working groups. For

the first two age groups and the last two age groups we have, for all b, R(1, b; 1) = R(2, b; 1) =

R(18, b; 1) = R(19, b; 1) = Iso, with two exceptions: before the lockdown and after Phase II

we set R(1, 1; 1) = R(2, 2; 1) = Risk(High). The parameters we have introduce are collected

into a vector ρ ≡ (Risk(L), Risk(H), Risk(In), T r, Iso).

Given the parameters’ restrictions and the model, we calibrate parameters to match the

number of fatalities in a given region (for instance, Lombardia or Veneto, as described in

Section 8).

5 Epidemiological model dynamics

The next step in the description of our model is the presentation of the epidemiological

model dynamics, to which this section is devoted.

The Dynamics of Susceptible and Exposed

Infectious do not initially feel symptoms: Tinc is the average number of days of incubation

before showing symptoms. They then spread the virus for a period of Tinf days. The number

of susceptible that each infectious infect at time t, R(a, b;α) depends on the activation policy

for each sector of the working population, described by α, and on β(mt). This probability

may evolve over time, as it is affected by several factors: precautionary measures, such as

wearing masks, changes in the virus aggressiveness, and on the probabilities with which

susceptibles and infectious agents are active. Note that what matters for the virus dynamics

is the product of such probabilities. These probabilities reflect both the average response of

agents to policies and their behavioural response to the spreading of the virus and they vary

over time.

11
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With this notation, the core equations describing the dynamics of the virus for Susceptible

and Exposed are, for each a in each of our 19 groups of agents:

∆St(a) = − 1

TInf

β(mt−1)

β(m0)

∑
b∈A

It−1(b)Pr(Vt ≥ v∗t |b)
Nt−1

R(b, a;α)St−1(a)Pr(Vt ≥ v∗t |a)

∆Et(a) = −∆St(a)− 1

TInc
Et−1(a)

Figure 2 illustrates the interaction between Susceptible and Exposed in the model. In

this section we describe the model dynamics only by reporting the main equations. The

full specification of the model along with its full graphical representation are reported and

illustrated in details in the Online Appendix. It is worth noting that the specification of the

time-varying component of the probability of death could be enriched to include the effect of

cures, in addition to the vaccine, that are effective in reducing the mortality of the disease.

Figure 2: Flowchart of Multiple-Risk SEIR-HC-SEC-AGE Model

Note: Interactions between Susceptbile and Infectious in different groups.

From Infectious to Mild and Severe

After a period Tinc infectious suffer symptoms, that can be mild or severe. Severe patients

(SEV) never revert to a state of MILD. MILD patients do not show symptoms initially,

but without proper medical care may turn into Severe. This process occurs after Tinf days,
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in which both infected and infectious have very mild symptoms, and thus do not avoid

contacts. Within this framework, we introduce testing, which leads to domestic quarantine

of the infectious with mild symptoms. Domestic quarantine has two effects. First it reduces

the spread of the virus by reducing the number of contacts in which some infectious agents are

allowed to interact with susceptible agents. Second, paired with pharmacological treatment,

it can stop patients from reaching a stage requiring hospitalization.

To sum up, the Exposed enter the compartment of the infectious to exit as those with mild

symptoms, MILDt(a) and/or those with severe symptoms, SEVt(a). The allocation to these

groups is controlled by two probabilities: pmild(a) and
(
1− pmild(a)

)
. Testing allows to detect

a share δ of those destined to become MILD; they thus become detected, MILDD
t (a) while

(1− δ) become undetected, MILDU
t (a). Detection and associated medical care reduces the

length of the period in which agents are infectious from Tinf to Tinf0 < Tinf . The same applies

to the infectious who are destined to become Severe. As a consequence of the severity

of symptoms, there are no Severe undetected after Tinf days in which they are virtually

asymptomatic.

Hospitalization, ICU needs and endogenous mortality

The mild infected either recover – after periods of duration respectively of Tsrec,D and (Tsrec,U)

days depending on whether they are detected or not – or their condition becomes severe

and they require hospitalization, after a period of duration Tshosp,D (Tshosp,U) days, again

depending on detection. The probability of becoming severe is higher for the undetected

than for the detected: pM2Sev,U(a) > pM2Sev,D(a). With testing and early detection, patients

are cared at home and hospitals congestion is reduced. MILD patients who become severe and

are hospitalized recover after a period of (Tshd,U − Tshosp,U) days. All severe patients become

hospitalized after Tshosp days. Severe hospitalized either recover after (Tshd,U − Tshosp,U) days

with probability pic(a) or they worsen with probability (1− pic(a)) and require intensive care

after Thosp−ic days. Patients needing ICU may die or recover. When ICU is available and

there is no hospital congestion mortality is determined by the CFR, pfat(a). However,

mortality in ICU increases with hospital congestion. This increase is modelled by a logistic

function of total hospitalization. The parameter k in the logistic is calibrated in such a way

that the endogenous mortality probability is zero under normal conditions and it increases

with hospital saturation. When ICU is fully saturated, mortality explodes as all patients in

need of ICU who do not find availability succumb. Those patients in ICU who recover, leave

ICU after (Tshd − Thosp−ic). Those who do not recover die after (Tsd − Tshosp−ic). Those who

need ICU and do not find it available, die immediately.
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Recoveries and Fatalities

At the end of each day the population decreases because of fatalities, while the stock of

recovered grows by the amount of those who survive having had mild or severe symptoms,

with or without the need of IC. The cycle starts again in the next day.

6 Adding Macroeconomics to the model

For given demographic and epidemiological parameters, the SEIR-HC-SEC-AGE model de-

scribed in the previuos section produces a set of public health effects of Covid-19 that depend

on the behavioral response and on the age brackets and sectors that are allowed to go back

to work according to the policy that the authority will decide to implement. Our goal is to

compare public health effects and economic effects of different possible policies.

A policy π is formally defined as a vector with ten elements, each one corresponding to

one of the five potentially active age brackets in each of the two sectors. Each element of

this vector specifies the fraction of the workforce that is allowed to go back to work in the

corresponding age bracket/sector. Table 1 describes five of these policies in which we are

specifically interested.

Table 1: A set of possible post lock down policies

Low-risk sector High-risk sector
Age brackets Age brackets

Policy 20-29 30-39 40-49 50-59 60-65 20-29 30-39 40-49 50-59 60-65

π = LOCK 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

π = SEC 1 1 1 1 1 0.6 0.6 0.6 0.6 0.6

π = AGE 1 1 1 0.6 0.6 1 1 1 0.6 0.6

π = AGE SEC 1 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

π = ALL 1 1 1 1 1 1 1 1 1 1

Note: In this table, an entry equal to 1 (0.6) means that the entire (60% of the) labor force of the correspondent age bracket
and sector is activated.

Defining with t∗ the day (November 1, 2020) in which we begin the one-year period of

simulation of the effects of the different policies, Policy “LOCK” is defined as starting on

t∗ a lockdown with the minimum set of workers that were employed during the March 2020

lockdown, which is on average equal to about 60% of the labor force according to Barbieri

et al. (2020). Policy “SEC” is based on sending back to work after t∗ all the labor force

of the low-risk sector, and only the strictly needed minimum in the high risk sector, which

incidentally includes health and education workers according to Barbieri et al. (2020). Policy

“AGE” uses only age as the criterion to decide who is allowed to resume activities after t∗:

under this policy all workers between 20 and 49 years of age go back to work independently
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of the sector, while only 60% of the older workers is allowed to be productive in both sectors.

Policy “SEC AGE” is representative of what a mixed policy could look like, using both the

age and the sector criteria: all workers under 50 in the low-risk sector and under 30 in the

high-risk sector resume activities, while 40% of the older workers in all sectors has to stay

home. Finally, Policy “ALL” sends back to work all those who were working before the

Covid-19 outbreak. Note that schools, even if they are part of the risky sector, are assumed

to reopen with at least the minimum set of workers allowed by each policy. Of course, many

more policies can be defined in a similar way, but these are the emblemeatic ones in which we

are interested. Our framework could be easily adjusted to consider also policies differentiated

by geographic area.

Using the SEIR-HC-SEC-AGE model described in previous sections we can associate to

every policy π and region r its public health effects that we summarize with the total number

of fatalities in the first year after t∗:

TOT FATr,π =
t∗+365∑
t=t∗

REM FATt,π (11)

As for the economic effects, we summarize them as a function of the fraction of the la-

bor force that is not allowed to work under a given policy π. We are fully aware that a

complete characterization of the economic costs of the Covid-19 pandemic would require a

more sophisticated and detailed dynamic macroeconomic model, which we leave for future

extensions of this project. For the time being, given the urgency of comparing the economic

effects of different post lockdown strategies, we believe that estimating these consequences

as a function of the fraction of the labor force that cannot work is sufficiently informative

at least about the orders of magnitude. Specifically we assume that the GDP of region r,

denoted as Yr, is a Cobb Douglas function of labor Lr and capital Kr,

Yr = AK1−η
r Lηr ,

so that the percent GDP change induced, ceteris paribus, by a variation dLr of the employed

labor force is

∆Yr ≈
dYr

Yr

= η
dLr
Lr

(12)

which is a negative number if dLr < 0. Each post lockdown policy π will produce a decline

dLr,π of the employed labor force and thus a corresponding percent GDP loss ∆Yr,p according

to equation (12). This GDP loss is the measure of the economic effects of the interaction

between policy π and Covid-19 that we consider.

Within this framework we aim at making two contributions. First, we want to character-
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ize an efficient set of policies. Second, we want to compare between themselves and against

the efficient frontier the five stereotypical post lockdown policies described in Table 1.

7 Estimation of the behavioral response

Moving to the data, we next provide estimates of the mobility model described in Section

3 for the two Italian regions that we consider. Since time of observation is now crucial,

differently than in Section 3 we re-introduce the time subscript. We omit an indicator for

the type of activity, which is not necessary.

Each individual i has to decide whether to perform an activity. She draws utility Vi

from a uniform distribution F on [0, V ]. If Vi ≥ v∗d,t, she becomes active. Note that v∗d,t
depends on the day of the week d and on the calendar time t through the policies and the

news. Denote as Gd,t the total number of activity-driven moves of a given type performed by

subjects in a population of size N ; we will estimate this value using Google mobility data,

hence the G label. There are of course a variety of types of moves and we rely on three

emblematic categories for which Google provides data from various areas around the world

and specifically for Lombardia and Veneto during the pandemic:9 (i) moves to a workplace;

(ii) moves to public transport hubs such as subway, bus, and train stations; (iii) moves to

grocery markets, food warehouses, farmers markets, specialty food shops, drug stores, and

pharmacies.

Google distinguishes between a reference time t0 corresponding to the five weeks that

go from January 3 to February 6, 2020, in which mobility decisions were taken by agents

with no Covid-19 concern, and the running time t from February 25 onward in which mo-

bility decisions are taken instead in the presences of concerns about the Covid-19 epidemic.

Assuming that the random variables for each individual are independent, the variable un-

derlying the Google measure of mobility, denoted by Gd,t, is the number of individuals with

value Vi larger than v∗d,t, and who are therefore active. Note that Gd,t depends on d and t

through v∗d,t. The measure of mobility provided by Google for each type of move is defined

by:

gd,t =
Gd,t

median(Gd,t0)
− 1 (13)

which is the relative change in the number of moves of a given type between calendar day

t and the same day-of-the-week d during the reference period t0. Descriptive statistics for

9These data and the related documentation can be found at this link: https://www.google.com/

covid19/mobility/.
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these indicators are reported in Table 2.

Table 2: Descriptive statistics for the Google mobility measures

Mean Std. Dev. Min Max

Lombardia

Workplace moves -.37 .21 -.92 .11

Transportation moves -.49 .21 -.92 .12

Grocery moves -.23 .18 -.95 .03

Veneto

Workplace moves -.31 .20 -.91 .06

Transportation moves -.39 .25 -.92 .06

Grocery moves -.17 .22 -.96 .17

Note: the table reports descriptive statistics for the three Google mobility measures that we consider, over the period of 242
days going from February 25, 2020 until the data are available. For each type of move, the measure is the change of the number
of moves on a given day relative to the same day-of-the-week in the reference period defined as January, 6 – February, 3, 2020.

The two panels of Figure 3 display, separately for Lombardia and Veneto, the evolution

of fatalities and of the average gd,t for the three types of moves from February 25, 2020, until

the data are available. Note that mobility first declined substantially in the last week of

February, before the Lockdown, immediately after the first red zone in the city of Codogno

was created in Italy and the outbreak of the pandemic became the main news in the media.

Mobility fell again immediately after the Lockdown and started to raise back after fatalities

levelled off at the beginning of April. During the summer mobility went back to the levels

of the reference period while fatalities have declined to almost zero.

Since the median of a binomial random variable is equal to one of the two integers defining

the interval containing the mean, we can take:

median(Gd,t0) ∼
(
(1− F (v∗d,t0)

)
N

where ∼ in this case indicates that the difference between the two terms is less than 1/N ;

and therefore:

gd,t =
v∗d,t0 − v

∗
d,t

V − v∗d,t0
which gives the Google measure of mobility gd,t as a linear function of v∗d,t, respectively for

each type of move. Remember from Section 3 that

v∗ = V min

{
pC +K

pC + V
, 1

}
= V

pC +K

pC + V
(14)

where the second equality follows if we make the reasonable assumption that K is smaller

than V (and in fact we never observe a complete lack of movement). Therefore gd,t can be
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Figure 3: Evolution of mobility during the pandemic
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Note: The figure displays the daily average of the Google mobility measure for workplaces, transit
and grocery. For each type of mobility, the measure is the change of the number of moves on a given
day relative to the same day-of-the-week in the reference period defined as January, 6 – February, 3,
2020. Grey dashed vertical bars denote sundays. The three black solid bars denote, respectively, the
beginning of the Lockdown on March 8, 2020, the beginning of the Phase 2 on May 4, and the school
reopening on September 14.

written as:

gd,t =
v∗d,t0

V − v∗d,t0
− V

V − v∗d,t0

pC +Kt

pC + V

Recall from equation (3) that p ≡ Itβ(mt)
N

is the probability of being infected. To capture the

dependence of the function β on seasonal determinants which affect the aggressiveness of the

virus as well as the attention of subjects in using preventive measures against contagion like

masks, we assume that
N

Cβ(mt)
≡ 1 + ψ ∗ TEMPt (15)

where TEMPt is the average temperature in the month of day t minus the average temper-

ature in the reference period between January 6 and February 3, 2020. Therefore gd,t can be

written as a non-linear function of the number of infectious It, of the policy parameters Kt,
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of the upper bound of the value of mobility, denoted V , and of the temperature TEMPt:
10

gd,t =
v∗d,t0

V − v∗d,t0
− V

V − v∗d,t0

It +Kt (1 + ψ ∗ TEMPt)

It + V (1 + ψ ∗ TEMPt)
(16)

The parameter ψ measuring the effect of temperature on the probability of infection has in

principle an ambiguous sign since the summer may have reduced the aggressiveness of the

virus but also the attention of subjects in avoiding contagion.

During the pandemic, precise information on the number of infectious was not available

in Italy (as well as elsewhere) for two reasons. First, testing was not conducted massively and

randomly. Second, asymptomatic infectious subjects could not be detected immediately after

contagion, even with massive and random testing. Fatalities due to Covid-19 have instead

been measured more precisely during the pandemic and were announced by the media on a

daily basis with great emphasis. To estimate equation (16) we therefore assume that during

the pandemic subjects were taking the daily number of fatalities as an indirect proxy of the

number of infectious It.
11

Table 3 reports non-linear least square estimates of equation (16) for the grocery measure

that we will use in our simulations of Section 9 and for the average of the three measures

that we will use in Figure 4. In the simulations we use the estimates for grocery, because

this is a type of mobility induced by a primary need (nutrition) that is barely affected by the

policy in place (one has to eat also during the lockdown) and by whether a subject is affected

by the specific activation policy that we want to simulate (both a subject allowed to work

and one forced to be inactive have to eat). Therefore, it is the measure of mobility, among

the ones for which we have data, that can better describe the free behavioural response of

subjects as a function of news about fatalities.

The first row of the Table shows that the term
v∗d,t0

V−v∗d,t0
is estimated to be small and not

distinguishable from 0 in the case of grocery. This finding derives from the fact that the

probability of moving in a unit of time was on average relatively higher in the reference

period before the pandemic particularly for the case of more necessary moves like those for

grocery. Consistently with this estimate, the term − V
V−v∗d,t0

is found to approach −1 and

becomes indistinguishable from −1 in the case of grocery (second row).

10Specifically, Kt is a set of two dummies ( Lock and Phase2, multiplied by their respective coefficients)
respectively equal to 1 during the Lockdown and the Phase 2, and equal to 0 otherwise. Similarly, V is a
constant plus a set of dummies for Lombardia, Sundays and festivities, which are assumed to change the

upper bound of the value of mobility. Moreover,
v∗
d,t0

V−v∗
d,t0

and V
V−v∗

d,t0

are also parameters to be estimated.

11A drawback of this assumption is that fatalities in a given day reflect the number of infectious 15-20
days before.
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Table 3: Non-linear least square estimates of behavioural responses

Grocery Average
v∗
d,t0

V−v∗
d,t0

-0.02 -0.25***

(0.02) (0.01)

− V
V−v∗

d,t0

-0.84*** -0.66***

(0.14) (0.08)

ψ -0.04*** -0.01

(0.00) (0.01)

Kt ≈ Lockdown 199.87*** 25.75**

(55.39) (11.02)

Kt ≈ Phase2 55.36*** -11.88**

(19.04) (4.85)

V 725.65*** 97.58**

(255.45) (41.39)

∆V for Lombardia 85.28* 139.18**

(50.60) (58.40)

∆V for Sundays -485.63*** -44.60**

(163.47) (18.11)

∆V for Easter -90.36** -30.02**

(37.63) (13.13)

∆V for April 25 -539.82*** -63.51**

(175.77) (25.56)

∆V for May 1 -547.04*** -70.66**

(181.78) (27.36)

∆V for June 2 -608.07*** -119.13**

(212.62) (51.54)

Observations 484 484

Adj R-squared 0.69 0.78

Note: the table reports non-linear least square estimates of equation (16), using daily information on Google mobility measures
and official figures on fatalities for Lombardia and Veneto from February 25, 2020 until October 23, 2020. For each type of
mobility, the measure is the change of the number of moves on a given day relative to the same day-of-the-week in the reference
period defined as January, 6 – February, 3, 2020. Lockdown and Phase2 are, respectively, dummies for the period between March
8 and May 3, 2020 and the period between May 4 and October 23, 2020. April 25, May 1 and June 2 celebrate, respectively,
the end of WW2, the labor day and the beginning of the Italian Republic. Temperature data are taken from the information
for Italian cities downloadable at meteo.it, using Milano and Verona as references respectively for Lombardia and Veneto.

In the third row, temperature is estimated to decrease the probability of infection (and

significantly in the specific case of grocery), suggesting that the effect of heat on the aggres-

siveness of the virus has prevailed over the effect on the attention in wearing masks

The fourth and fifth rows report estimates of the dummies capturing Kt, i.e. the severity

of the restrictions imposed by the government during the Lockdown and the Phase 2 respec-

tively. The estimates suggest that restrictions were lifted substantially during Phase 2 with

respect to the Lockdown.
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In the sixth row, in line with the assumptions of our model, V is estimated to be higher

than Kt for both the Lockdown and Phase2. The ranking of these three estimates is a

central result of this estimation exercise and captures the effect of the policies with respect

to normal times. This result is better shown in Figure 4 which is based on the estimates in

the last column of Table 3 for the average of the three mobility measures. The figure displays

the scatter plot of daily fatalities and average mobility. The different markers of the scatter

plot identify the three periods for which we have data: Pre-lockdown, Lockdown and Phase

2. The figure also plots predictions from locally weighted regressions as well as predictions

based on the estimates in column 2 of Table 3.

Figure 4: Behavioural responses to news and policies
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Note: the figure displays the scatter plot of daily fatalities and the average of the Google mobility measures for workplace,
transportation and grocery. For each type of mobility, the measure is the change of the number of moves on a given day relative
to the same day-of-the-week in the reference period defined as January, 6 – February, 3, 2020. The different markers of the
scatter plot identify the three periods for which we have data: Pre-lockdown, Lockdown and Phase2. The figure also plots
predictions from locally weighted regressions obtained with the “lowess” Stata command (dashed lines; bandwith=0.8) as well
as the predicted values of obtained with the non-linear least square estimates for working days reported in column 4 of Table
3 (dashed-dotted lines).

Within each of the three phases we cannot reject that the relationship between mobility

and daily fatalities is negative and convex as predicted by the model. This negative and

convex relationship within each phase is the behavioural response of subjects to the variation

of the contagion risk, in the absence of policies.12

12Cochrane (2020) for example states that, as a consequence of the omission of this response, “the SIR
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The parallel downward shift between the circles and the squares is the effect of the

Lockdown, which has reduced mobility for any level of fatalities. The upward shift from the

squares to the triangles is instead the effect of the softening of restrictions during the Phase

2 with respect to the Lockdown. While it is evident that policies were effective, this Figure

clearly shows that the hypothesis of an endogenous response to the number of infectious

cannot be dismissed and it is quantitatively important. Of course, the short time horizon on

which these estimates are computed does not guarantee that in the long run this behavioural

effect would maintain the same intensity, as individuals may become used to the presence of

Covid-19 and less responsive to news related to the effects of the disease.

Coming back to Table 3, the remaining rows of the table show estimates of how V changes

in Lombardia with respect to Veneto and on holidays with respect to working days. Ceteris

paribus, the utility of moving is higher in Lombardia, leading to a slightly smaller reduction

of mobility in this region with respect to the reference period. As for holidays, as expected

given Figure 3, they all tend to reduce mobility of the kind considered here.

8 Calibration

The calibration of the SEIR-HC-SEC-AGE model requires giving values to different sets

of parameters that are described in this section. The relevant dates for the simulation are

described in Table 4.

Table 4: Relevant dates for the simulation

Observed Past Simulated Future
Appearance Beginning Beginning Start Start of Start of End of

of the of observed of the of new school Simulation simulation
virus data lock down Phase 2 year t∗ t∗ + 364

Date January 1 February 24 March 8 May 4 September 14 November 1 October 31

2020 2020 2020 2020 2020 2020 2021

We assume that in both region the virus SARS-Cov-2 arrived at the beginning of 2020

so that the first infectious subjects is observed on January 1, 2020. The available data on

the diffusion of Covid-19 in Italy, published by the Protezione Civile, are available from

February 24, 2020 and are continuously updated.13 The first lockdown has been introduced

model has been completely and totally wrong”. Durante et al. (2020) also find that after the virus outbreak
mobility declined in Italy, but significantly more in areas with higher civic capital, both before and after
a mandatory national lockdown. Civic capital is however likely to be irrelevant for our analysis since all
available measures suggest the absence of significant differences in this variable between Lombardia and
Veneto.

13The data can be downloaded from https://github.com/pcm-dpc/COVID-19.
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by the Italian government on March 8, 2020.

The government has modified the lockdown policy starting with a partial release of the

measures, the so-called Phase 2, on May 4, 2020. We simulate the effects of hypothetical

policies starting from November 1, 2020. We end the simulation after one year, on October

31, 2021.

Table 5: Fraction of the population and labor force participation in each age bracket

Age brackets

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+

Lombardia

Population 0.088 0.094 0.098 0.118 0.158 0.156 0.118 0.099 0.071

Participation 0.494 0.771 0.832 0.804 0.235

Veneto

Population 0.085 0.096 0.098 0.112 0.156 0.161 0.121 0.100 0.071

Participation 0.497 0.751 0.826 0.794 0.236

Note: The table reports the fraction of the population in each age bracket and the labor force participation rates for the brackets
between age 20 and age 69 in Lombardia and Veneto. The SEIR-HC-SEC-AGE assumes, in line with the available evidence,
no significant labor force participation in the other age brackets. The total population is 10 ml. in Lombardia and 4.9 ml. in
Veneto (Source: ISTAT).

8.1 Demographic Parameters and Labor Share

The distribution of the population and of the labor force participation rate in the nine age

brackets that we consider for the two regions is taken from ISTAT and is reported in Table

5. As expected Lombardia and Veneto have a similar distributions, with a slightly higher

fraction of over-50 in Veneto (45.3%) than in Lombardia (44.4%). The total population of

the two regions is instead significantly different: 10 ml. in Lombardia and 4.9 ml. in Veneto.

In order to compute the GDP loss we need to calibrate the parameter representing the

labor share, and thus the coefficient that maps the loss of employment due to Covid-19 into

a GDP loss. For the value of this parameter we follow Torrini (2016), who estimates it to

be 0.65 for the Italian economy. In the absence of specific information about this parameter

for the two regions that we consider, we use this estimate for both Lombardia and Veneto.

8.2 Covid-19 Parameters

There are two sets of relevant parameters describing the health consequences of Covid-19 for

an exposed subject. We take both these sets from Ferguson et al. (2020). An obvious caveat

in considering these parameters is that they are estimated on the basis of data from China

adjusted to predict US and Great Britain targets. We cannot exclude that the corresponding
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values for Lombardia and Veneto are different. However, the estimates of Ferguson et al.

(2020) have been confirmed by follow up research for different regions in the world.14 We

hope to be able to improve this parameter estimates if and when reliable data based on

random testing for these two regions will become available. In any case, we do not expect

that the comparison of the effects of the different policies should be particularly sensitive to

reasonable changes of these parameters, at least in terms of first order consequences.

Table 6: Health effects of Covid-19 by age bracket

Age brackets

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+

psev 0.001 0.003 0.012 0.032 0.049 0.102 0.166 0.243 0.273

pic 0.05 0.05 0.05 0.05 0.063 0.122 0.274 0.432 0.709

pfat 0.00002 0.00006 0.0003 0.0008 0.0015 0.006 0.022 0.051 0.093

Note: the table reports for each age bracket the probability of hospitalization, psev , the probability of needing intensive care if
hospitalized, pic and the probability of death pfat for a subject exposed to Covid-19 infection. Source: Ferguson et al. (2020).

The first set of Covid-19 parameters defines the probability of hospitalization, psev, the

probability of needing intensive care if hospitalized, pic, and the probability of death pfat by

age bracket and is described in Table 6. The values of all these probabilities clearly indicates

that Covid-19 is considerably more dangerous for the old, with a pronounced increase of

risks for subjects with an age greater than 50.

The second set of Covid-19 parameters that we need describes the lags of the transitions

between states of the disease in the basic SEIR model; they are described in Table 7. As by

now well known, a characteristic that makes SARS-Cov-2 particularly nasty is the number of

days in which a subject may be infectious without showing symptoms, which is on average

Tinf = 2.9. Tinc = 5.2 (this is the average number of days of incubation). The period

going from the day in which the first symptoms appear to the day of recovery is usually of

Tsrec = 11.1 days for a Covid-19 patient, while in case of death, this event occurs Tsd = 17.8

days after the appearance of symptoms. Hospitalization, if it is needed, occurs typically

Tshosp = 5 days after symptoms, while the period from symptoms to hospital discharge in

case of hospitalization is of Tshd = 22.6 days.

To match the evolution of daily fatalities, we also calibrate TshospU = TshospD = Tshosp = 5

as well as TsrecU = TsrecD = Tsrec = 11.1, i.e. the number of days before hospitalization and

14The results in (Manski and Molinari, 2020) and (Korolev, 2020) highlight the importance of evaluating
robustness when COVID-19 parameters are used. We have evaluated the robustness of our results using
the Covid-19 parameters calculated by the Center of Deseases Control (CDC) for the U.S. (Garg, 2020) and
results are reported in the Online Appendix.
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Table 7: Transition lags in the evolution between illness states of Covid-19

Infectious Incubation Symptoms Symptoms Symptoms Symptoms
without without to to to entry to discharge

symptoms symptoms recovery death in hospital from hospital
Tinf Tinc Tsrec Tsd Tshosp Tshd

Days 2.9 5.2 11.1 17.8 5 22.6

Note: the table reports the number of days for each transition between illness states of Covid-19. Source: Ferguson et al. (2020).

the recovery time is common across types of people. A fraction of hospitalized patients

requires an IC bed after Thosp−ic = 3 days and if they survive they stay other Tic−rec = 7

days before they completely recover. Finally, Tsd−hosp = 12.8 and Tshd−inf = 17.6.

8.3 Availability of Beds in Intensive Care

The SEIR-HC-SEC-AGE model makes the constraint in the availability of IC beds endoge-

nous. When this constraint is binding, all subjects who need intensive care and do not find

it become fatalities. Figure 5 illustrates how the constraint has operated in the two regions

during the period for which data are available.

Figure 5: The IC availability constraint in Lombardia and Veneto

Note: The figure reports, respectively for the two regions, the simulated demand for IC beds due to
Covid-19, the observed number Covid-19 patients in IC and the observed number of patients that
were effectively hospitalized in IC. The vertical bars indicate the start of the Lockdown (March 8),
the start of the Phase 2 (May 4) and the start of the new school year (September 14). The observed
series were downloaded from https://github.com/pcm-dpc/COVID-19 for the used IC and from https:

//www.dropbox.com/s/skabm9ct71qud32/ICU%20beds%20statistics.xlsx?dl=0 for the supply of IC.

In Lombardia (left panel), given the initial very fast diffusion of the virus and the number

of available IC beds, the constraint started to bite very quickly. These facts are responsible

for the explosion of fatalities in this region which is displayed in the left panel of Figure 7.

Even if Lombardia made a major effort to increase the supply of IC beds, the constraint

continued to bite for a long time. In Veneto instead, the demand of IC is simulated to never

reach the supply.
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8.4 Basic Reproduction Number (BRN) of Covid-19 by age and
sector

It is well known that every variant of the SEIR model is very sensitive to the basic repro-

duction number. In the case of the SEIR-HC-SEC-AGE extension that we have designed,

the calibration of the BRN is further complicated by the need to set different values for

different combinations of age, sector and working status of an infectious subject and of the

susceptible subjects that enter in contact with him/her, which requires to calibrate a 19×19

Basic Reproduction Matrix (BRM).

Moreover, given the presence of a behavioural response, we have to calibrate how this

initial matrix evolves over time to generate a time varying Rt matrix for the periods for which

we have data: the period before the Lockdown, the period of the Lockdown and the period

of the Phase 2. Finally, we will do out-of-sample simulations of the alternative policies.

8.4.1 Calibration of the Basic reproduction Matrix

We recall that the BRM is completely described by the parameters in the vector ρ. Re-

member that R0(a, b) = β(m0)M0(a, b), where β0 is the common initial probability of being

infected give a contact and M0(a, b) is the matrix that describes the initial number of con-

tacts between agents in groups a and b. The parameters in the vector ρ are therefore not

independent, as their ratio reflects the relative number of contacts between subjects at work,

on transports, doing grocery and at home. The calibration of these four parameters is how-

ever simplified by the fact that, with the auxiliary information described below, they can be

all set as a linear function of a single parameter, Risk(work), which captures the number of

contacts relevant for an average worker. So, by calibrating Risk(work) in a way such that

the model matches the fatalities observed respectively in the two regions, we calibrate also

the other parameters that are linearly related to Risk(work).

The first type of auxiliary information that is needed to implement this strategy concerns

the estimated number of contacts for the Italian population which we obtained from the

official documentation released by the government to justify the rules for the Phase 2.15

This information suggests that the average number of contacts on transportation is 65%

of the number of contacts in an average working place, while the correspondent number

when not at work or not on transports is 60%. Therefore we set Tr = 0.65 ∗ R(work) and

Iso = 0.60 ∗Risk(work)).

15Specifically, we use the numbers in Table 1 of the document provided at this link https://www.

ilmessaggero.it/uploads/ckfile/202004/Riaperture_report_27222237.pdf?, that is based on origi-
nal data from the “Istituto nazionale Assicurazione Infortuni sul Lavoro (INAIL)” and from Mossong et al.
(2008).
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We then discipline the remaining parameters of the vector ρ, Risk(L) and Risk(H), using

the evidence in Barbieri et al. (2020) who report an index of proximity for workers operating

in different sectors of the Italian economy. Sectors with higher proximity indices are those

in which spreading of the virus is likely to be higher. Based on the evidence in their Table 3,

we compute the proximity index for the sectors above and below the mean proximity index.

We then assume that the percent difference between Risk(H) and Risk(work) is equal to

the percent difference between the proximity index for sectors above the mean index and

the mean index itself. This difference is equal to 18%. Similarly for the percent difference

between Risk(work) and Risk(L), which is equal to 12%.

8.4.2 Evolution over time of the Basic Reproduction Matrix

In standard single-agent SEIR models the diffusion of the virus in each period depends on

the basic reproduction number rt, which is the product of the basic reproduction number r0

and the share of susceptible individuals in the total population at time t. A virus starts to

implode when rt goes below unity. “Herd immunity” is reached when the share of susceptible

individuals in the total population goes below 1/r0. We emphasize the r0 used here is the

reproduction number at initial pre-epidemic conditions, when no precautionary measure of

any type is taken, so the number of infected contracts even if no such measure is taken.

The same concepts apply to our model except that the basic reproduction number be-

comes a basic initial reproduction matrix. Rt(a, b, α) depends on the share of susceptible

individuals in the total population, the evolution over time of the probability of contract-

ing the virus for a susceptible given a contact with an infectious, and the product of the

probabilities of activation of susceptible and infectious agents. The Rt(a, b, α) element of the

matrix will evolve according to:

Rt(a, b;α) =
St−1(b)

Nt−1

β(mt−1)

β(m0)
Pr(Vt ≥ v∗t |a)Pr(Vt ≥ v∗t |b)R(a, b;α)

In the current multi-risk model, Pr(Vt ≥ v∗t ) is a 19 dimensional vector that describes

the probability with which agents in each group become active. Substituting (3) into the

equation (7), and using equation (15), we get that each of the elements of this vector is given

by:

Pr(Vt ≥ v∗t |a) =
(V −Kt(a)) (1 + ψ ∗ TEMPt)

It + V (1 + ψ ∗ TEMPt)

To determine Kt(a) we use the estimates of the behavioural response of grocery moves in

the first column of Table 3 of Section 3. We pick the parameter estimates for grocery because
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they refer to an activity that can be chosen more freely by an individual, differently than

workplace and transportation activities that may be constrained by the legal possibility

to work or by interruptions of transportation services during Lockdown or the Phase 2.

Indeed grocery was never prohibited, provided that a minimum distance could be maintained

between individuals inside the shops or in their vicinity. For agents that are activated and

go to school and work we set Kt(a) = 0, as their choice of being active depends only on

the behavioural reaction and no lockdown policy is imposed to them. For agents that are

inactive we use the estimation results and set

Kt(a) = 199.87Lock + 55.36Phase2.

where Lock and Phase2 are defined in foonote 10. Agents in the first two groups are activated

when schools are opened and inactive otherwise. For agents in group 3,...12 (the ten groups

constructed by considering the share of agents in working age employed in high risk and low

risk sectors) a share α is active and the complement to one is inactive. Finally, agents in

groups, 13,...19 are all inactive.

To understand the role of containment policies it is useful to define the value of Rt within

each regime in an hypothetical situation in which the policy is implemented in the absence

of fatalities associated to the virus, and thus shutting down the behavioural response factor.

We define this value as

R0,eq(a, b;α) =
β(mt−1)

β(m0)
Pr(Vt ≥ v∗t |a, 0)Pr(Vt ≥ v∗t |b, 0)R(a, b;α)

where Pr(Vt ≥ v∗t |a, 0) is obtained by setting to zero the behavioural response of agents to

observed fatalities in group a.

8.4.3 Endogenous Mortality and Hospital Flows

Testing policies are calibrated to be initially different for Lombardia and Veneto, but they are

forced to converge after the Lockdown, in line with the evidence from the data. Therefore,

the share of pre-tested agents δ (see Section 5) is calibrated permanently to 0.3 for Veneto

while it is set initially to 0 in Lombardia and successively increased to 0.3 during Lockdown.

To capture a testing policy designed to control hospitalization flows we set Tinf 0 = Tinf .

To match the evidence on the stability of the ratio of quarantined at home to total infected in

Veneto, we set the probability with which a detected MILD requires hospitalization to zero.

To match hospital flows, the probability pfatγ with which the MILD Undetected become

Severe and need hospitalization is set to 0.9.
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8.5 Calibration of Risk at Work

Figures 6 and 7 show that our calibration of Risk(work) and of the other related parameters

produces a very good match between simulated and observed fatalities. What is crucial for

the model to successfully match the two very different patterns of mortality in Lombardia

and Veneto is the difference in the endogenous fatality rates of Covid-19 for the two regions.

This heterogeneity is generated by the different management policies of the hospital flows,

and by the associated unequal degrees of hospital and ICU saturation.

Figure 6: Simulated and observed total fatalities

Note: The figure reports, respectively for the two regions, the simulated and observed numbers of
total fatalities due to Covid-19. The vertical bars indicate the start of the Lockdown (March 8), the
start of the Phase 2 (May 4) and the start of the new school year (September 14). The observed series
were downloaded from https://github.com/pcm-dpc/COVID-19.

The equivalent BRMs for the pre-Lockdown period that result from the calibration for

Lombardia and Veneto are respectively displayed in the left and right panels of the Appendix

Figure A–1. As expected, in each region the reproduction number for interactions among

workers in the low-risk sector is higher than for the interactions involving non-active subjects

and smaller than in the high-risk sector. More interestingly, to match the observed mortality

in the two regions, in each pair of corresponding blocks of the two matrices the relevant R0,eq

must be set to a considerably higher value for Lombardia. This difference reflects local

factors such as the density in the population which is higher in Lombardia (422 inhabitants

per Km2) than in Veneto (267 per Km2).

The equivalent BRMs during the Lockdown for the two regions are reported in the two

panels of the Appendix Figure A–2. The entries in these matrices are remarkably lower across

the entire population with respect to the pre-Lockdown values in Figure A–1. Relatively high

values are observed only for the working population because, as already mentioned, during

Lockdown a minimum fraction of workers (60% according to Barbieri et al., 2020) was allowed

to work. Therefore the R0,eq for the working population during Lockdown is produced by the

same activation matrix prevailing in the pre-Lockdown regime for 60% of the population.
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Figure 7: Simulated and observed daily fatalities

Note: The figure reports, respectively for the two regions, the simulated and observed numbers of
daily fatalities. The vertical bars indicate the start of the Lockdown (March 8), the start of the Phase
2 (May 4) and the start of the new school year (September 14). The observed series were downloaded
from https://github.com/pcm-dpc/COVID-19.

Figure 8: Simulated average Rt

Note: The figure reports, respectively for the two regions, the average Rt, weighted to take into
account the population structure. The vertical bars indicate the start of the Lockdown (March 8), the
start of the Phase 2 (May 4), and the start of the new school year (September 14).

Figure 8 displays instead the evolution over time of the average Rt, which is determined by

the behavioural response to fatalities and to the policies that we calibrate using the estimates

of Table 3 in Section 3 (se also Section 8.4.2). This behavioural response determines a slight

decrease of the average Rt in the pre-Lockdown period, when fatalities become positive but

social distancing is not yet universally common in the population. At the beginning of

the Lockdown we observe a sharp decrease of Rt as a reaction to the introduction of the

containment policy, followed by a further reaction induced by the behavioural response to

fatalities. When fatalities level off at the end of March and then decline, the average Rt

begins to increase but it never goes back to initial values.

9 Policy Simulations

We simulate the model to predict the effects of the hypothetical policies that could be

adopted in the two regions as of t∗ = November 1, 2020. We run the simulation for 365 days,

30

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3580626

 https://github.com/pcm-dpc/COVID-19


under the assumption that by October 31, 2021 a vaccine or a therapy for Covid-19 will be

available. We present our results in two sections: the first one describes the construction of

the BRM equivalent matrices for the different policies, while the second one illustrates the

results of the out-of-sample simulations.

9.1 Construction of Policies

Since each policy has its own workers activation vector, also the corresponding BRMs

differ between policies. The parametrization of these matrices is however simplified by

the fact that the basic initial reproduction matrix is completely described by the vector

(Risk(L), Risk(H), Risk(work), T r, Iso).

We report, as an illustrative case, the full R0,eq matrices for the policy AGE, respectively

for Lombardia and Veneto, in the two panels of the Appendix Figure A–3. The matrices for

all the other policies are reported in the Online Appendix. In all cases the time varying Rt

matrices associated with the R0,eq matrices evolve according to the law of motion determined

by the estimates of the behavioural response to mortality discussed in Section 7 and 8.4.2.

As expected, for each policy the R0,eq parameters grow with a combination of age, activity

and riskiness of the sector (in case of activity). Most interactions (in particular those involv-

ing active subjects) have a R0,eq greater than one but, taking into account the population

weights, the mean R0,eq corresponding to each policy is smaller. Therefore, the corresponding

Rt matrix will decrease below 1 already at rather low levels of observed mortality because

of the behavioural response.

We also assume that, during the simulation period, schools will be open and the inter-

action between students in the same class, given the adoption of protection measures, will

imply a risk of contagion. This because we believe that schools should be open and we are

interested in simulating the effects of containment policies in this condition. Note that work-

ers in the education sectors (teachers and assistants) are classified by Barbieri et al. (2020)

as operating in a high-risk sector and are treated accordingly in our simulation model, as a

function of their age.

9.2 Dystopian Trade-off

Our main results are described in Figure 9 and 10. In these figures the vertical axis measures

fatalities per million inhabitants while the horizontal axis measures GDP losses (relative to

the GDP implied by the policy ALL), and the depicted lines describe, for the two regions and

for four different scenarios, the frontier of the policies that are efficient, i.e. those yielding

combinations of fatalities and GDP losses that are located on the lowest south-west convex
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envelope of the set of outcomes induced by all feasible policies.

An example of these efficient policies is provided in the Appendix, Table A–1.16 The

top part lists the efficient policies that are common to both regions, ordered from the one

that maximizes fatalities and minimizes the GDP loss (ALL) to the one associated with

the opposite effects (LOCK). The general pattern is clear: starting from policy ALL, in

order to move down along the efficient contour it is necessary to progressively inactivate (i.e.

allow only the minimum 60% of the labor force to be active) workers in the high-risk sector,

beginning with those belonging to a higher age bracket, until LOCK is reached in which case

all age brackets and sectors are inactivated. Some policies slightly deviate from this pattern

because labor force participation rates are not the same in all age brackets. The next panel

in the table describes policies that are efficient only in Veneto, while the last panel describe

two representative policies described in Table 1 that are close to the efficient contour.

The left panel of Figure 9 considers an hypothetical scenario in which β(m) = 0.717

and there is no behavioural response of the population to the number of fatalities. In this

Scenario, the Policy ALL, that sends back to work all the active population, avoids any GDP

loss but causes the maximum number of yearly fatalities in both regions, with Lombardia

facing more than twice as many death per million inhabitants as Veneto (≈ 7000 versus

≈ 3000) over the year starting on November 1, 2020. At the opposite extreme, the policy

LOCK, that activates only 60% of workers in all sectors and age brackets, would significantly

reduce fatalities (less than 1500 and less than 500 per million inhabitants, respectively in

Lombardia and Veneto), but it would cause a probably unsustainable 25% loss of GDP in

both regions.

However, interestingly, in both regions the efficient frontier is significantly convex, indi-

cating the existence of a number of efficient mixed strategies based on the age and sector

criteria that would reduce the total number of fatalities with relatively minor GDP losses. In

Lombardia a 1 percentage point reduction of the GDP loss (about 4 billion Euro) obtained

sending back to work only young and low-risk sector workers starting from a complete lock-

down (LOCK), generates about 615 additional fatalities on a yearly basis. At the opposite

extreme of the frontier, the same 1 percentage point reduction of GDP loss obtained with the

activation of the oldest workers in risky sectors, i.e. approaching the case of the ALL policy,

16This example refers to the left panel of Figure 9, i.e. to the case of β(m) = 0.7 without behavioural
response.

17Remember that this parameters may be interpreted in two ways. One is that individuals are 30% more
careful than normal in maintaining social distancing. The second is that aggressiveness of the virus declines
by 30% for meteorological or other reasons. To shut down the behavioural response of subjects in this type
of scenarios, we set to zero the slope of the response to the number of fatalities, and set the intercept at the
average of the fatalities generated by the policy ALL during the simulation period for the case in which a
behavioural response is present.
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the number of additional fatalities is more than 8 times higher (5,860). The correspondent

numbers for Veneto (where one percentage point of GDP is worth about 1.6 billion Euro)

are 60 and 1597 (in this case the second number is about 26 times higher than the first one).

Figure 9: The efficient frontier in the two regions with β(m) = 0.7

Note: In each panel, the two curves report the efficient frontiers for outcomes occurring between November 1, 2020, and October
31, 2021. Each point shows the GDP loss and the number of fatalities per million individuals associated to the policies that are
efficient (as defined in the text). The representative policies are displayed in the same way. GDP losses are defined as relative
to the GDP implied by the policy ALL.

A very different pattern emerges in the right panel of Figure 9, where we allow individuals

to respond to news about fatalities, based on the estimates in Table 3 of Section 7. In this

scenario, the frontiers of both regions become remarkably linear and flat because, when

fatalities grow, individuals begin to react by reducing mobility and thus infections. This

behavioural response counterbalances the effect on fatalities deriving from activating workers

with the intent to decrease GDP losses. In other words, when the behavioural response kicks

in, increasing the level of activity with workers of higher ages in more risky sector becomes

possible with a lower cost in terms of fatalities.

The choice of which one of the specific efficient policies should be adopted depends of

course on the weight society gives to fatalities versus GDP losses in the aggregate welfare

function. However, the combination of the evidence in the two panels of Figure 9 suggests

that even in the absence of a behavioural response to fatalities, there exists a wide set of

policies differentiated by age and riskiness of sectors that would allow the two regions to

reduce significantly GDP losses without a dramatic increase in fatalities. The existence

of a behavioural response of the size we have estimated would help in reaching this goal

and would become effective when most needed, i.e. at relatively high levels of fatalities as

in Lombardia. Of course, this more desirable scenario hinges on the expectation that the

behavioural response that we have estimated in Section 7 for the first months of the pandemic

persists in the long run, even when the population will have get used to the virus. If at that
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point habit formation will induce a weaker response to fatalities, the scenario of the left

panel will be the most likely one.

Figure 10: The efficient frontier in the two regions with β(m) = 0.9

Note: In each panel, the two curves report the efficient frontiers for outcomes occurring between November 1, 2020, and October
31, 2021. Each point shows the GDP loss and the number of fatalities per million individuals associated to the policies that are
efficient (as defined in the text). The representative policies are displayed in the same way. GDP losses are defined as relative
to the GDP implied by the policy ALL.

Figure 10 replicates the same analysis for the case in which β(m) = 0.9. This parameter

implies a lower level of attention of the population in implementing social distancing or

a higher level of aggressiveness of the virus. In this case, the scenario described by the

left panel, without a behavioral response, is considerably more dramatic featuring higher

numbers of fatalities At this level of the parameter β(m) the existence of a behavioural

response to fatalities at least as strong as the one we have estimated is crucial to allow for

a substantial reduction of GDP losses that is not too costly in terms of lives. This is shown

in the right Panel of Figure 10, where the frontiers of both regions become again linear and

flat, with numbers of fatalities that are closer in size to those of the right panel of Figure

9. If the ALL policy were to be adopted with β(m) = 0.9 and in presence of a behavioural

response, yearly fatalities would not go above the level of 5000 per million inhabitants.

As for the relative position of the efficient frontiers of the two regions with respect to

fatalities for any level of GDP loss, Lombardia appears to have a relatively worse trade-off

in all scenarios. One reason for this difference, as already mentioned, is the higher density

of the population in this region. In addition, although the management of hospital flows has

become more similar between the two regions, at least during the period for which we have

data (see Figure 1), differences remain that make the public health system in Lombardia

more fragile with respect to significant waves of infections. And this appears to be true even

if the ICU capacity has been expanded in this region during the pandemic.

Figure 11 plots the daily fatalities predicted by the model for Lombardia allowing the
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Figure 11: Daily fatalities under the different policies in Lombardia.

Note: The figure reports, for Lombardia, the daily fatalities due to Covid-19 under the 5 representative
policies that we consider, for the scenario with behavioural response and β(m) = 0.7. The left panels
cover the entire period from January 1, 2020 to October 31, 2021. The right panels zoom into the year
of simulation starting on November 1 in order to better highlight the differences between the fatalities
associated to each policy.

prediction to differ, during the simulation year, according to the five representative policies

that we consider. The left panels cover the entire period from January 1, 2020 to October

31, 2021. The right panels zoom into the year of simulation starting on November 1, 2020.

The top panels are for the scenario in which β(m) = 0.7 and the population responds to

fatalities. In this case, despite the lower β(m), Lombardia is predicted to face a new wave

of infection (which is exactly what we are observing at the moment in which we are writing

these pages) and possibly a third one towards the end of the period. However, these new

waves are unlikely to be as dramatic as the one experienced in March, 2020, even if policy

ALL were to be adopted and everybody went back to work. The lines for the representative

mixed policy AGE SEC clearly indicates that the differentiation of containment by age and

sector risk offers the possibility to alleviate the costs of the future waves in terms of fatalities.

The bottom panels assume β(m) = 0.9, while still allowing for the estimated behavioural

response of the population to fatalities. In this case Lombardia will face a much worse second

wave of infection during the winter of 2020-21, particularly if policy ALL is adopted. An in-

teresting feature of this scenario, in line with the qualitative predictions of Cochrane (2020),

is the oscillatory pattern of daily fatalities during the simulation year that we observe inde-

pendently of the adopted policy. These oscillations are the result of the behavioural response

to fatalities in the population that is strong when fatalities are high, thereby contributing to
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contain the height of the wave, and weak when fatalities are low, contributing to facilitate

the conditions for a subsequent wave.

Figure 12: Daily fatalities under different policies in Veneto.

The figure reports, for Veneto, the daily fatalities due to Covid-19 under the 5 representative policies
that we consider, for the scenario with behavioural response and β(m) = 0.7. The left panels cover
the entire period from January 1, 2020 to October 31, 2021. The right panels zoom into the year of
simulation starting on November 1 in order to better highlight the differences between the fatalities
associated to each policy.

In all these scenarios, the level of fatalities would be much higher in the absence of a

behavioural response and the correspondent figures are in the Online Appendix. Figure

12 replicates the analysis of predicted daily fatalities for Veneto with qualitatively similar

findings, starting from a much lower level of fatalities for the reasons illustrated in previous

sections.

Tables 8 displays some summary statistics of the effects of the representative policies in

Lombardia and Veneto. Here we want to highlight two interesting facts. First, in both regions

herd immunity is unlikely to help in winning the battle against the virus. Even if everybody

went back to work during the simulation year (Policy ALL), thus increasing the probability

of infection, herd immunity would not grow to sufficiently high levels. Second, while the

mean Rt over the simulation year is very similar for all the five emblematic policies and

slightly smaller than 1 in all cases, what determines the different outcomes is the variability

of Rt over time.

36

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3580626



Table 8: Lombardia and Veneto: main outcomes with behavioural response and β(m) = 0.7

Policies

LOCK SEC AGE SEC AGE ALL

Lombardia

Total fatalities 15198 21422 21894 19400 26393

GDP loss 0.26 0.104 0.094 0.148 0

Final immunity share 0.050 0.059 0.061 0.057 0.068

Average Rt 0.947 0.956 0.957 0.954 0.961
(0.823-1.324 ) (0.807-1.324) (0.805- 1.324) (0.817-1.324) (0.786-1.324)

Veneto

Total fatalities 5557 8681 8891 7339 12311

GDP loss 0.26 0.104 0.097 0.150 0

Final immunity share 0.023 0.035 0.036 0.031 0.045

Average Rt 0.910 0.937 0.939 0.933 0.946
(0.857-1.225 ) (0.856-1.225) (0.854-1.225) (0.873-1.225) (0.840-1.225)

Note: The table reports the main outcomes of the five policies in Lombardia and Veneto, for the scenario with behavioural
response and β(m) = 0.7, measured over the year between November 1, 2020 and October 31, 2021. Final immunity share
is calculated at the end of the simulation period taking into account the total exposed from January 1, 2020 and excluding
reinfection. The numbers in parentheses indicate the minimum and maximum Average Rt during the simulation period (they
do not define a confidence interval).

10 Conclusions

Compared to existing work in the now vast field of economics of a pandemic, this paper has

several important distinctive features.

Quantitative Realism in Modeling. First of all, we have tried to make the model

directly empirically relevant, aiming to provide precise (as much as possible) estimates and

predictions of future developments. We are not interested here in providing qualitative

regularities that can organize our thinking about the phenomenon: we want to provide a

tool that measures consequences in terms of the most important outcomes (such as number

of fatalities, loss of GDP, development of herd immunity in the population), and thus offers

precise estimates of the tradeoffs between the values of these variables that follows specific,

implementable, realistic policies. We want to provide a tool for the decision makers and the

informed public opinion.

To achieve this objective of quantitative realism, we build, relying on Favero (2020), a

model extending the classical SEIR (which is the relevant epidemiological model in the case

the Covid-19 epidemic, as opposed for instance to SIR models) taking into account two

broad orders of factors. The first is the constraints of hospital and health structures. This

constraint is a crucial specific characteristic of the current epidemic, and explains many of

the puzzling phenomena that have emerged (one instance is the difference of the spread of the

epidemic in the two regions of Lombardia and Veneto). The second is the specific dynamic of
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the epidemics across different types of individuals and clinical conditions. This in turn allows

us to take into due account the differences in fundamental biological parameters across ages.

Only because we do this in a realistic way we can then calibrate the crucial parameters and

provide an accurate estimate of policies differentiating the intervention depending on the age

of the individuals.

Role of Hospitals and Health Structures. A crucial characteristic feature of the

current epidemic has been its potential to overrun hospitals and health structures, intro-

ducing a significant non linearity in the number of fatalities as function of the number of

infected. We have used as a proxy for the measure of stress on hospitals the fraction of use

of ICU’s. While we do not think that ICU have a dominant role in the ability of hospitals

to save lives, the measure has proved to be in our data analysis an effective indicator of the

performance of hospitals in care provision. This feature, together with the more obvious

effect of population density, plays a crucial role in explaining the difference between the de-

velopments in Lombardia and Veneto, and is likely the most important explanation of other

specific instances of the epidemic, such as, for example, its recent evolution in New York

City.

Identification of Efficient Policies. In line with our main aim, we have not tried to

derive estimation of policies on the basis of a welfare function or the utility of a representative

agent in a competitive economy with a public sector. Our main conclusions, when we evaluate

policies, have been formulated as two main groups of findings. First, we want to identify

the policies that are efficient, that is policies for which there is no other feasible policy that

induces a better final outcome in all relevant outcomes. We think that public opinion and

informed discussion should choose among these, and offer the analysis necessary to avoid

policy mistakes. Second, we allow the comparison between any two of these policies to be

reduced to a comparison between estimated specific values of the relevant outcomes. When

the public is considering the shift from a policy to another, we are offering here an estimate

of the costs and benefits of the two policies. We have no illusion that the numbers we offer

are the true numbers: we are however convinced that having some estimate reasonably close

to the truth is better that having only qualitative, sometimes obvious, statements. Navier-

Stokes equation provides an approximation, just like we do, but planes fly on the basis of

the approximation. Here the quantitative realism is essential: what matters is the size of

the effect, not just its direction.

The results presented in Section 9 illustrate one of the main tools we offer to the public

debate. The figures present the values of possibly the two most important variables (total

number of fatalities and GDP loss over one year period) that our model associates to a

menu of policy choices determining the number and groups of workers that are allowed back
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to work. In line with our efficiency criterion, we only provide the values associated with

the policies that are not dominated by other feasible ones. The results are presented for

two regions, that are emblematic of two very different evolutions of the current epidemic in

Italy, Lombardia and Veneto. As expected, the precise trade-offs depend on the estimated

underlying parameters, that are very different as anyone acquainted with the current debate

in Italy knows. In spite of this, precise conclusions common to both cases can be drawn,

which are therefore robust to the parameter specification.

Behavioral Adjustments. We have also provided an estimate, based on real data, of

the effect of behavioral adjustments of individuals to the risk of infection. The estimation

strategy is guided by a simple but effective model of how individuals balance the utility from

mobility with the risk of getting infected, and how this response adjusts to the estimate of

the number of infectious based on the current number of fatalities. The size of the effect of

this adjustment is striking. Its magnitude, particularly in the early days of the epidemics,

is comparable to the effects of the administrative measures taken in Italy in the months of

March and April, which were severe. The Pareto curve, which is our measure of the trade-off

between fatalities and loss of GDP becomes almost flat as a consequence of these individual

adjustments. The response is highly non linear: an additional increase in the risk (measured

in our model by the number of fatalities) results in a flatter and flatter response of the

mobility measures. We should also take into account that this estimate of the effect relies

on the assumption that the size of the response will be in the future similar to what we have

observed in the past; this assumption may be problematic.

Extensions. We have not explicitly considered, in this version of the paper, policies

that are different according to regions (or macro regions, such as North and South). This

extension is feasible, indeed easy within our framework, since it requires a calibration of

the key parameters, as well as the number of Infectious in the initial period. Also, we have

not modelled the impact of policies on the capital side of the production function and we

have not considered fiscal policy interventions and their consequences to workers, firms and

the sustainability of public debt. We plan to extend the simple macroeconomic structure

adopted here to address all these issues in future work.

Costs and benefits of alternative policies that are widely discussed have not been consid-

ered explicitly, but can be easily adjusted within the current framework. Here we consider

some examples. Increasing the number of IC units and training the personnel necessary to

manage them has a financial cost, and a benefit in terms of fatalities. These unitary costs

can be estimated, and the effect of the policy estimated. Testing, of all types, has clear

costs, and benefits that can be formulated as reduction of the corresponding entries of the

basic reproduction matrix. Testing of workers can substantially reduce contagion within a

39

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3580626



risk sector (low and high); and it can reduce the risk across risk classes (for instance affect-

ing the contagion in mass transportation). Similarly, measures to reduce the spread during

traveling affect the Tr parameter. Pharmacological remedies change the basic “biological”

parameters, such as the psev, pic and pfat. In summary, the purpose of the paper is to provide

a method that is rich enough but tractable to quantify the benefits of alternative policies.

40

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3580626



11 Appendix

Figure A–1: Basic Reproduction Matrices before Lockdown

Note: Each cell in the table reports the R0 for the interaction between an infectious subject of the category of the corresponding
row and exposed subjects in the category of the corresponding column.

Figure A–2: Equivalent Basic Reproduction Matrices during Lockdown

Note: Each cell in the table reports the R0, eq for the interaction between an infectious subject of the category of the corre-
sponding row and exposed subjects in the category of the corresponding column.

Figure A–3: Equivalent Basic Reproduction Matrices post-Lockdown for Policy AGE

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.
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Table A–1: Worker activation vector of the efficient policies in Lombardia and Veneto with
behavioural response and β(m) = 0.7

Low-Risk sector High-Risk sector
Age brackets Age brackets

Policy 20-29 30-39 40-49 50-59 60-65 20-29 30-39 40-49 50-59 60-65

Efficient AGE SEC policies common to both regions

p = ALL 1 1 1 1 1 1 1 1 1 1

p = AGE SEC1 1 1 1 1 1 1 1 1 1 0.6

p = AGE SEC2 1 1 1 1 1 0.6 1 1 1 0.6

p = AGE SEC3 1 1 1 1 1 1 1 1 0.6 0.6

p = AGE SEC4 1 1 1 1 1 0.6 1 1 0.6 0.6

p = AGE SEC5 1 1 1 1 1 1 0.6 1 0.6 0.6

p = AGE SEC6 1 1 1 1 0.6 1 0.6 1 0.6 0.6

p = AGE SEC7 1 1 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC8 1 1 1 0.6 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC 1 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC9 0.6 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC10 0.6 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC11 1 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC12 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC13 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC14 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = LOCK 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Efficient AGE SEC policies for Veneto only

p = AGE SEC15 1 1 1 1 1 1 1 1 0.6 1

p = AGE SEC16 1 1 1 1 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC17 0.6 1 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC18 1 1 1 0.6 1 1 1 0.6 0.6 0.6

p = AGE SEC19 1 1 1 0.6 0.6 1 1 0.6 0.6 0.6

p = AGE SEC20 1 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Other representative policies close to the efficient contour

p = SEC 1 1 1 1 1 0.6 0.6 0.6 0.6 0.6

p = AGE 1 1 1 0.6 0.6 1 1 1 0.6 0.6

Note: This table reports the labor force activation vector for all the efficient and representative policies.
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